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SUMMARY 

A computational study of the development of two-dimensional unsteady viscous incompressible flow around a 
circular cylinder and elliptic cylinders is undertaken at a Reynolds number of 10,000. A higher-order upwind 
scheme is used to solve the Navier-Stokes equations by the finite difference method in order to study the onset of 
computed asymmetry around bluff bodies. For the computed cases the ellipses develop asymmetry much earlier 
than the circular cylinder. The receptivity of the computed flows in the presence of discrete roughness and 
surface vibration is studied. Finally, the role of discrete roughness in triggering asymmetry for flow past a 
circular cylinder is studied and compared with flow visualization experiments at Re = 10,000 

KEY WORDS unsteady flows; incompressible viscous flows; onset of asymmetry; Navier-Stokes equations; finite difference 
method; bluff bodies 

1. INTRODUCTION 

Bluff body aerodynamics has long been of interest to fluid dynamicists for both technological and 
scientific reasons. Such a flow, when started impulsively, is characterized by large-vorticity 
generation at the wall which is progressively convected and diffused for two-dimensional flows, with 
convection being dominant for the Reynolds number under consideration. The flow rapidly separates, 
forming a closed recirculation zone. In the early stages this zone is made up of two symmetric 
counter-rotating eddies. When the Reynolds number (based on diameter and freestream speed) 
exceeds 500, one can observe secondary and tertiary vortices in this early period of flow 
establishment. During this early period the wake bubble grows in width and length with time while 
retaining the symmetry up to a certain time. After this the eddies become asymmetrical and are shed 
alternately downstream to form a so-called Benard-Khnh street. This time of asymmetry is 
primarily a fimction of Reynolds number and is facility-dependent; Honji and Taneda' report this 
time to be about eight for Re=200. The flow visualization pictures at Re= 10,000 reported by 
Coutanceau and Defaye2 indicate that this time is about four. 

The periodic shedding of large-scale eddies from a bluff body placed in a uniform mean flow is one 
of the most common self-sustained oscillations in fluid mechanics. This is an open system and the 
above-mentioned behaviour occurs because of flow instability. There are numerous review articles on 
this topic, including those of Huerre and Monkewitz3, Bearman and Graham: Morkovin' and 
Oertel.6 These are mostly concerned with the instability of laminar flows and are thus restricted to 
very low Reynolds numbers with special emphasis on local versus global instability and convective 
versus absolute instability. It has been observed by Huerre and Monkewitz3 that flows past bluff 
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Figure 1 .  Physical and computational domain 

bodies behave like an oscillator and the oscillator frequency as determined by vortex shedding is a 
complex combination of spatiHemporal growth of disturbances. By and large this explanation holds 
good for large Reynolds numbers also, but then one would be required to study the stability of mean 
flows, which are time-dependent. On the other hand, high-Reynolds-number flows have been studied 
for observing structural and topological changes by Dallman and Schewe’ and Perry and Chong.’ 
These studies emphasize that two-dimensional bubbles are unstable to a three-dimensional 
disturbance field, leading to a succession of bifurcations. The first bifurcation is the onset of 
asymmetry. 

Therefore it is natural to capture the self-excited oscillations by means of directly computing the 
flow field by solving the three-dimensional unsteady Navier-Stokes equations. However, present-day 
computers do not allow such a simulation while resolving the necessary temporal and spatial scales. 
If the primary field is nominally two-dimensional, then it is possible to study the evolution of two- 
dimensional disturbances. In an earlier attempt, Hankey and Shang’ have computed the flow field 
around a circular cylinder for a nominally two-dimensional flow. In this study no turbulence model 
was used for a flow at Re  = 1.7 x 10’. The instability of the inflectional point velocity distribution in 
the near wake showed two unstable modes, with the stronger one giving rise to asymmetric 
oscillation. This instability analysis is performed on the mean velocity wake profile. The asymmetric 
mode defines the Strouhal number, while the symmetric mode is associated with higher-frequency 
oscillation in the wake. 
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Figure 2. Streamline contours for circular cylinder at Re= 10,000 
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Figure 3. Vorticity contours for circular cylinder at Re = 10,000 

While the simulation of Hankey and Shang' did produce asymmetry for the compressible code, 
various other investigations have reported the absence of asymmetry in their incompressible flow 
calculations (see e.g. Reference 10 and 1 l), where lower-order schemes are used. Braza et al." have 
used a second-order scheme for their computations. In actual flow situations the loss of symmetry can 
be due to any combination of the following perturbation sources: 

(a) non-uniform oncoming flow 
(b) presence of surface roughness 
(c) the running conditions of the experiment. 

While it is appropriate to study such a flow development from the receptivity point of view, the 
disturbance environment cannot always be prescribed. 

In the present work we have concentrated on studying the onset of asymmetry in the near wake of a 
circular cylinder and elliptic cylinders of various thickness/chord ratios. While it is necessary to 
trigger asymmetry for the case of the circular cylinder to compare with experiments, asymmetry 
develops quickly for the flow past elliptic cylinders. A nominally two-dimensional flow past a 
circular cylinder maintains its symmetry for a long time because of the absence of a preferred 
direction in the computational field. It has been shown that the asymmetry can be triggered easily by 
either a transverse surface vibration or discrete roughness element. Finally, the flow past a circular 
cylinder at Re = 10,000 is simulated and compared with experimental results when asymmetry is 
triggered by surface roughness. 



ONSET OF ASYMMETRY IN FLOW PAST CYLINDERS 1331 

Figure 4. Streamline contours for elliptic cylinders of r/c = 0.25 at Re= 10,000 

In the next section the formulation of the problem is given. Results and discussion are given in 
Section 3 and this is followed by conclusions. 

2. FORMULATION 

The unsteady incompressible two-dimensional NavierStokes equations are solved in the 
streamfunction-vorticity formulation 

(1) -2  V * = - - w ,  

aco - 1 -  
at Re - + v * ( W V )  = -v2w, 

where I) is the streamfunction given by 

and w is the only component of vorticity for the two-dimensional flow, given by 
- - . I  

w = IV x Ylk.  (4) 
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Figure 5.  Vorticity contours for elliptic cylinder of ?/c = 0.25 at Ke = 10,000 

All lengths are non-dimensionalized with respect to the diameter/chord of the circular/elliptic 
cylinder. The velocity scale used is the freestream speed. The time scalc is defined by these length 
and velocity scales. 

Equations (1) and ( 2 )  are solved in an orthogonal transformed plane (Figure 1). The governing 
equations in the transformed plane are given by 

where h ,  and h, are the scale factors of thc transformation. The contravariant components of velocity 
in the transformed plane are given by 
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Figure 6. Streamline contours for elliptic cylinders of t / c  = 0.1 at Re = 10,000 

The analytical orthogonal transformation used for the circular cylinder is given by 

with uniform spacing in the azimuthal direction (<). The grid is stretched in the radial direction (q )  
and is given by 

where ro is the radius of the cylinder, Aro is the spacing between the cylinder and the first concentric 
grid line and d is the increment of successive concentric grid line spacings. Other details of the 
formulation are the same as in Reference 12. 

In the case of an elliptic cylinder the orthogonal transformation is given by 

where a is the focal distance, v]  = q ,  is the ellipse and v] = q2 is the outer boundary. 



1334 M. T. NAIR AND T. K. SENGUPTA 

I I 
t= 6.00 

I It- 9.00 

Figwe 7. Vorticity contours for elliptic cylinder of t / c  = 0.1 at Re= 10,000 

Boundary and initial conditions (referring to Figure I )  

On the solid boundary (ABC) the no-slip condition is applied: 

$ = constant, a$/* = 0. 

This condition fixes the wall vorticity as 

t=12.00 1 
A periodic boundary condition is applied at the cut (AF and CD). At the outer boundary (DEF), 

uniform flow conditions are applied. The far-field boundary condition used for the vorticity transport 
equation (6)  is 
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Figure 8. Front stagnation point versus time for circular cylinder and elliptic cylinders of r/c = 0.1 and 0.25 

Equations ( 5 )  and (6) are solved using the finite difference technique. Equation ( 5 )  is solved using 
an alternating direction implicit (ADI) method due to Peaceman and Rachford, given in Reference 
13. The iterations are continued till the solution residue at every point is reduced to lo-'. Equation 
(6) is solved using an explicit Euler backward scheme for time discretization. Central differencing is 
used for the diffusion terms, while a third-order upwind scheme developed by Kawamura et al. l4 is 
used for the convection terms. This discretization for convection terms has a truncation error 
proportional to the fourth derivative with respect to the transformed variable. 

The problem under investigation is to study the onset of asymmetry after the flow is impulsively 
started. Hence the initial condition is given by inviscid irrotational flow. 

Additionally, pressure information in the complete flow field is obtained by solving the Poisson 
equation for pressure given by 

am auo p p  = - - - 
at ifrl ' 

In the orthogonal transformed plane, equation (14) is given by 
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Figure 9. Streamline contours for translating and obliquely oscillating circular cylinder at Re = 200 
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Figure 10. (a)-(d) Streamline contours for circular cylinder with roughness at Re= 10,000 
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A Neumann boundary condition at the surface and far stream, as obtained from the normal 
momentum equation, is used in solving equation (15) along with the periodic condition on the cut. 

3. RESULTS AND DISCUSSION 

All the computations are done for Re = 10,000 with an initial time step of which was increased 
10-fold after t = 4. We have also computed the flow past a circular cylinder with second-order time 
accuracy (three-point backward scheme) for Re = 9500 and compared it with results presented in 
Reference 12. Since there were no significant changes in the results, all the cases were computed with 
the Euler backward scheme. 

The present method has also been used to compute the flow field past a rotating and translating 
cylinder for various combinations of rotation speed and Reynolds number. The results presented in 
Reference 15 compared excellently with available experimental results. All these points to the 
accuracy of the results presented herein. 

For the circular cylinder case, 251 points are taken in the azimuthal ( r )  direction and 300 points in 
the radial (q) direction, where the outer boundary is more than 36 diameters away in a 0-type grid. 
For all the computations the first grid line in the radial direction is l o p 3  of the diameter/chord of the 
circular/elliptic cylinder. The grid is expanded in a smooth way such that the dispersion and 
dissipation errors are minimized." 

Figure 2 shows the computed streamlines for the flow past a circular cylinder up to the non- 
dimensional time t = 40. The vorticity contours for later times, as presented in Figure 3, clearly show 
the asymmetry. These figures show that the flow remains symmetric up to t = 26. Similar symmetry 
was previously observed by Son and Hanratty,I6 Martinez'' and Braza et al. l o  Braza et al." have said 
that the pow always achieves a steady symmetric pattern after a longer or shorter establishment 
period for Re = 1000. However, the authors contradict this later by saying that in a numerical 
simulation, although the destabilizing perturbation sources are absent, the truncation and round-off 
errors will trigger asymmetry after a large computing time. Figure 2 shows asymmetry developing 
first at t = 26 when one of the wake bubbles opens up in the downstream direction and a streamline 
which is outside the other attached bubble wraps around the released bubble to form an alleyway. 
This opens up further as time progresses and the first vortex is released at t = 40. This can be 
explained by noting that the present higher-order scheme has much lower phase errors for high-wave- 
number components as compared with the lower-order schemes used by Braza er al." and 
Martinez. ' I The lower-order schemes filter out the higher-wave-number components which are 
responsible for triggering asymmetry. 

Next, when the same solver was used to compute the flow field past an elliptic cylinder of 
thickness/chord ratio 0.25 for the same Reynolds number, the flow field became asymmetric around 
t = 4.8. This can be easily seen in the streamfunction contours in Figure 4 and the vorticity contours 
in Figure 5. 

The flow field around an elliptic cylinder of thickness/chord ratio 0.1 at zero angle of attack was 
then computed (Figures 6 and 7). Aerodynamically this is akin to a streamlined body such as an 
aerofoil. From the streamline contours plotted in Figure 6, it is evident that the flow becomes 
asymmetric around t = 5 .  However, in this case the asymmetry and near-wake phenomena are 
different in nature. The symmetric wake bubble in this case is longer compared with the other cases 
and this elongated bubble suffers an instability of KelviwHelmhotz type and breaks into oscillatory 
wavy flow in the wake. If one attempts to measure an equivalent Strouhal number, this will be large 
compared with that of a circular cylinder, which is also found experimentally by Modi and Wiland" 
and Ota et a1.I8 Thus computationally the onset of asymmetry is function of eccentricity of the body 
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Figure 10. (e)-(g) Streamline contom for circular cylinder with roughness at Re= 10,OOO 
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Figure 10. (h) Streamline contours for circular cylinder with roughness at Re= 10,000 
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Figure I I .  Pressure contours for circular cylinder with roughness at Re = 10,OOO 
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or, more precisely, the streamline curvature near the trailing edge. It can be reasoned that bodies with 
sharp comers, such as rectangular or square cylinder, will exhibit even earlier onset of asymmetry. To 
explain this, one should note that a circular cylinder has perfect symmetry with identical body 
curvature everywhere. In this sense the circular cylinder is special, and when the outer boundary is 
also a concentric circle, the flow does not have a preferred direction. Any small changes impressed 
upon the circular cylinder flow field cause the front and rear stagnation points to move in such a 
fashion that eventually symmetry prevails, while for an ellipse there is a preferred direction along 
with varying radius of curvature of the body. In Figure 8 we have shown the departure of the front 
stagnation point with respect to its initial location as a function of time. It is well known that the front 
stagnation point always moves about its initial location for high-Reynolds-number flows and it is the 
stability property of the near wake which transmits the disturbance quantities in incompressible flow 
to the front stagnation point. Figure 8 is thus an indicator of flow instability of the near wake to very 
small perturbations. This figure represents the receptivity of the flow field around circular and elliptic 
cylinders to numerical disturbances. The figure shows that the disturbance field, after a quiescent 
period of flow development, initially grows exponentially as a function of time. For the elliptic 
cylinders the onset of asymmetry occurs at around the same time, but for the thicker ellipse the 
instability frequency is larger than that for the slender ellipse. Also, comparison of the two ellipse 
cases reveals that the non-linear temporal growth is very important for the slender ellipsc--one can 
see a non-linear saturation of disturbance after only one cycle. 

In the same figure we have shown the numerical onset of asymmetry for a circular cylinder using a 
fifth-order upwind scheme for the vorticity transport equation. The delayed onset of asymmetry for 
this case as compared with third-order scheme once again demonstrates the fact that the circular 
cylinder flow field is sensitive to accumulation of numerical error. 

Next we investigated the receptivity of the flow past a circular cylinder to surface vibration. Figure 
9 shows the streamline contours up to t = 13 for the flow field around a circular cylinder which 
executes oscillation in an oblique direction at Re = 200. Once again it is seen that the symmetry of 
the flow is lost very early (at t = 2) for very small oscillations even at this low value of Reynolds 
number. The cylinder vibrates according to 

where 
obtained with a 121 x 150 grid with a very small time step of 5 x 
The parameters of vibration are given by 

and3 are the unit vectors along the direction x and y respectively. The reported results are 
by an explicit procedure. 

a, = 0.25, u,, = 0.25, 0, = Oy = n. 

These results are in conformity with the findings of Hankey and Shang.' It was shown by Hankey and 
Shang' that the asymmetric mode is more unstable than the symmetric mode. By oscillating the 
cylinder in the horizontal direction, one suppresses the asymmetric mode, while small transverse 
oscillation triggers asymmetry very quickly, as the disturbance growth rates are very high for the 
asymmetric mode as compared with the symmetric mode. 

It should be pointed out that to the best of our knowledge there are no computations available for 
flow past an elliptic cylinder at Re = 10,000. Lugt and Haussling2' have studied the flow past an 
elliptic cylinder at Reynolds numbers of 15, 30 and 200 with the cylinder fmed at an angle of attack 
of 45". Ohmi et ~ 1 . ~ '  have done both experimental and computational studies of the dynamic stall of 
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an elliptic aerofoil. Most of the results are for Re = 3000 with various frequency parameters. Here we 
have shown only the results for zero angle of attack. Detailed results giving the flow field around 
elliptic aerofoils for a range of angles of attack will be presented elsewhere. 

Finally, the flow field is computed around a circular cylinder with asymmetry induced by localized 
surface roughness and the results are compared with experimental visualization pictures of 
Coutanceau and Defaye.2 As mentioned earlier, the onset of asymmetry in actual flows could be due 
to multiple reasons and here we have chosen surface roughness as was done by Kawamura et al. l4 
This method is much more realistic than what has been done by Braza et al. l o  and Martinez' ' where a 
doublet-type disturbance is provided by rotating the cylinder in clockwise and anticlockwise 
directions successively. The establishment period even with the chosen strategy is an order of 
magnitude higher than in actual flows. We have shown the computed and experimental instantaneous 
streamline at some fixed time instants. It is easy to see from the experimental visualization pictures 
that the flow shows early asymmetry at t = 3.8. The corresponding computed streamline contours are 
shown in Figure 10. 

The roughness element has to be localized and asymmetrically placed on the surface. Statistically 
this is equivalent to the skewness of the roughness distribution. For a purely random rough surface 
the mean is zero, while the second-order statistics add to the melt height everywhere and it is the 
third-order statistics which produces asymmetry. The computed results with chosen roughness 
indicate that the roughness size to trigger asymmetry is of the order of 0.6% of the diameter. The 
roughness element is located at 138" with respect to the front stagnation point. Thus this is located 
within the recirculation zone. It should be noted that the roughness is only effective when placed in a 
zone after the point of separation. The asymmetric disturbance when produced before the point of 
separation is damped strongly and one would require a larger roughness size to achieve the same 
purpose. 

Figure I 1  shows the pressure distribution in the complete field after the impulsive start. The 
contours drawn are in the range from -8.0 to 1.5 at intervals of 0.5. The development of flow around 
the cylinder and the beginning of asymmetry can be noticed. Figure 12 shows the C, distribution on 
the circular cylinder at various times. It can be noticed that C, at 0 = 150 deg for the initial times are 
much lower than the minimum inviscid C,. This is due to the high velocity induced near the surface 
by the vortex which has just formed quite close to the cylinder. This results in a high value of c d  at 
the start as shown in Figure 13. The initial high c d  is also observed by Braza er al." in their 
computations at Re = 1000. 

4. CONCLUSIONS 

In this paper the onset of asymmetry is studied for a circular cylinder and elliptic cylinders. While the 
circular cylinder flow field remains symmetric for a long time, the flow field around the elliptic 
cylinders at zero incidence become asymmetric earlier. Furthermore, for the ellipses the asymmetry 
starts at the same time for both cases considered, but the asymmetry develops at a faster rate for the 
thicker ellipse. However, as the thickness/chord ratio is reduced, the asymmetry is due to the Kelvin- 
Helmholtz-type instability of the wake bubble by high-wave-number disturbances. 

Also studied is the way to introduce asymmetry in the flow field by surface vibration and localized 
roughness. A detailed comparison with experimental visualizations of the flow field past a circular 
cylinder at Re = 10,000 is made when the asymmetry is triggered by localized surface roughness. 
The flow is established early when the roughness is located in the zone where the shear layer is 
separated and the roughness height has a minimum value above which the flow establishment process 
follows the experimental value. 
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A11 these studies relate to two-dimensional disturbances. It would be natural to study a three- 
dimensional flow field even though the primary field is nominally two-dimensional. 
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